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A general theory is presented for the optimization of the coefficients of orbitals and configuration 
interaction expansion in the case of multiconfiguration wavefunctions containing all single excitations. 
The orbital coefficients are optimized by suitable orthogonal transformations of the atomic basis ; the CI 
coefficients are determined solving the usual secular problem. The energy minimization is performed 
directly by a gradient approach. The method works both for ground and excited states and no con- 
vergence difficulties are met. Computational examples are given for HzO and H2S molecules. 
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1. Introduction 

In two preceding papers a direct method of minimization of the energy func- 
tional has been proposed for closed and open shell systems and for a MC SCF 
formalism both for ground and excited states [ la ,  b]. 

In this paper the method is developed for the particular type of multi- 
configuration wavefunction that contains all the singly excited configurations 
with respect to a principal closed-shell configuration (Sect. 2). Introducing a suit- 
able orthogonal matrix, the optimization of the LCAO coefficients is carried out 
by a direct minimization of the energy expression along a gradient type approach 
(Sect. 3). The optimization of the CI expansion coefficients is obtained by solving 
the conventional eigenvalue problem. The method works both for ground and 
excited states (singlet or triplet) (Sects. 3 and 4). 

The results of test calculations for H20  and H2S molecules are reported to- 
gether with the main lines of  the computational program (Sect. 5). 

The single-excitation wavefunction has been proposed by several authors [2], 
and in a very recent paper by Dacre et al. [3] the single excitation MC SCF method 
is developed by direct minimization of the ground state energy, according to a 
procedure which is similar to that proposed by McWeeny [43 for the SCF method. 
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2. Theory : Energy Expression and Expectation Values for Wavefunctions with 
All Single Excitations 

As trial wavefunction of CI type we assume the expansion 
rno my 

' c):d0   1 % +  y. - ~ ,  v ~ v l ,  (1) 
I V 

where the dependence upon the parameter  matrices A and C, which we are going 
to specify, is formally brought out as function argument. We consider a singlet 
state (the development for a triplet is similar and will be considered below) of a 
2m 0 electron system whose fundamental  configuration of doubly occupied 
orbitals is represented by the Slater determinant 

1 
17, 0 IAA"LLI  =_ 

We start f rom a given set of m orbitals (molecular orbitals (MO's),  set {m} for 
brevity) of which mo are doubly occupied, collected in the 1 × m o row vector 

Iz>: (A B. . . I . . . I ' . . . J . . .L) ,  

and m,,--m - m  0 are empty (virtual orbitals relative to the given doubly occupied 
fundamental  configuration), collected in the 1 × m,~ row vector 

[ V > = ( S  T . . . V . . . V ' . . . Z ) .  

The singlet configurations, formed by a given single excitation I - ~  V of one 
electron from the orbital I of the set [I)  to the orbital V of the set IV), have the 
well known form of a sum of two Slater determinants 

1 
'%, v - f i  + IIAA... V7...L II }. 

All the set {m} orbitals are assumed to be orthonormal,  in the fol lowing/ ,  1' are 
used for orbitals of  the set ]1), V, V' for orbitals of the set I V) and M, N denote 
any two orbitals of  the set {m}. 

The expansion coefficients ,,~) ~vi are collected in the m~ x m 0 matrix A~)= (a~)1). 
The superscript (s) denotes the state of  the system; the matrix ,4 ~) together with 
the coefficient a~d ) is to be understood as the eigenvector (usually a column vector) 
associated with the energy *E ~), that comes out of  the CI secular equation. This 
point will be taken up again below: meanwhile we suppose to refer to a set 
(a~), A~)), (a~ '), ,4~')) .... of  m~= 1 + m o m ~  (i.e. s =  1 .... m~) eigenvectors (matrices) 
associated with eigenvalues 1E ~), ~E C~') ..... Of  course, this set is orthonormal,  that 
is is 

a~),,~*')* ± ,~¢~ ~)a ~')% - ,s (s, s' = 1 .... m~). (2) 0 t ~ 0  / u _ k ~ s  ~ s  I - -  t - '~s '  

In the following the orbitals of  the set {m} are expanded (LCAO approxima- 
tion) as linear combination of an or thonormal  atomic basis set whose elements are 
collected in the 1 × m row vector 

I Z ) = ( Z l " " ~ r " ' Z , , ) ,  with ( X I z > = I ~ .  

For  brevity the atomic orbitals (AO's) will be denoted by r, s, t, u . . . .  The linear 
combination coefficients for the I orbitals are called c~ and are collected in a 
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m × mo matrix C; similarly the coefficients for the V orbitals are called dry and are 
collected in a m × rnv matrix D. That is 

Ii>=ix>c and [V)=])~)D. (3) 

Introducing the definition ( / i s  the one-electron part of the Hamiltonian) 

mo 
FMN=JMN+ ~ ( 2 ( J M I J N ) - ( J M [ N J ) )  (M, N e  {m}), 

J = l  

where 
f M N = ( M I f I N )  and FMN=FNM, 

the fff matrix elements in the MO basis turn out to have the following expressions 
[5] 

m0 
< l l / t 0 l J g ° l l l / t 0 ) = l E 0 =  Z ( .XH-I-FIi) '  

I - 1  

(17Jol~C~117',,v)=x/2 F, v=,, /2 Fv,, 

( l tIJl, Vl~(g~l l t[Jl,, V, ) = 1Eo~5ii,tSvv, + Fvv , (~ l i ,  - Fl i ,~Svv,  q- 2 < I '  V I V ' I>  - < I' VI1V' >. 

Substituting and taking into account the normalization condition (2), the 
energy expression corresponding to the trial function (1) assumes the form 

*E(*) = leo  +'~ Z 2 (a(*)*F~va~), +a(oS)a~)t*Fvi) + Z Z a(~)*Fvv'a(~ !, - 
I V I V ,  V" 

Z Za~)~*F,,'a~ )z'+ Z Z a~)t*(2(I'V[V'I)-(I'V[IV'))a~ !''" (6) 
I,I" V 1,1' V,V' 

If  the MO expansion according to the Eqs.(5) and (6) is now introduced, the 
final expression of the energy turns out to be 

1E(S) = tr[h(R)L (~) +JR + G(Q(S))Q~S)?], (7) 

where the following matrices have been defined (E is a m x m matrix) 

R = CC?,  Q(~) = D A  (~)C?, 

?;s--<rl/ls>, l_a(e)]~,= ~ E, ugur,,,, where 9,r,,==Z(urlts) (urlst), 
t,U 

h(E) = f +  G(E), 
L (~) = R + ~ a~)*Q (s) + ~ 2  a~d)Q (~)? + Q(~)Q~S), _ Q(S), Q(~). (8) 

QC=) is a non-symmetric m x m matrix and h is the usual Hartree-Fock matrix 
(when E = R, of course). The matrix R contains the dependence upon the LCAO 
coefficients (matrix C) and the matrix Q(S) contains the dependence upon the 
CI expansion coefficients (matrix A (~)). 

The orthonormality conditions for the orbitals 

C*C= lmo, D?D = 1,,,~, D?C= Om~, C?D = O .... (9) 

imply the idempotency and exclusivity of the matrices R and R D = DD ? 

R 2 : R  (trR =mo), Rz=RD (trRD=mv), RRD=RDR = O. (9a) 
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R D is the projection operator in the subspace spanned by the virtual orbitals 
orthogonal to the space spanned by the occupied orbitals (of the projection 
operator R), that is RD= l m - R  [4]. The orthonormality conditions (2) in terms 
of Q(~) matrices become 

a(d)a~ ')* + tr(Q(~)Q (s')~) = 6s~,. (2a) 

In multiconfiguration calculations both CI expansion coefficients a ~  (A (~) 
matrix) and LCAO coefficients c,, (R matrix) have to be optimized in such a way 
that the energy ~E (~) becomes a minimum. Here the problem is of finding two 
matrices R and Q(~) which minimize the energy (7) subject to the orthonormality 
conditions (9, 9a) and (2a). With regard to the state (s) it is convenient to put these 
constraints into the form 

R 2 = R  ( t rR=mo,  R=R*)  

RQ(~) = O, Q(~)R = Q(~) (or Q(~)R D = O) 

a(o~)a(o s)* + tr(Q(S)Q (~)*) = 1. (10) 

It is easy to show that the conditions (10) come from Eqs.(9, 9a) and (2), and that 
from conditions (10) it is always possible to go back to the relations (9, 9a) and (2), 
with the definition of Q(S) given by Eq.(8). Thus finding the two matrices R and 
Q(S) is equivalent to optimize with respect to both A (s) and C. 

When spatial symmetry is present the block structure of Q(S) for the ground 
state is the same as that of R; also for the excited states symmetry is readily taken 
into account. 

When the matrices R and Q(S) have been determined the expectation value of 
any physical quantity, represented by a one- or two-particle Hermitian operator, 
can be calculated in terms of them only. Let Jg = Zi ~i  a one-particle operator 
given as a sum of one-electron operators ~ i ,  its average value relative to the state 
(s) has the expression 

( i  ~(~)[~l 1 tp(~)) = tr[m(L(~)+R)], 

where m is the matrix of elements mr~ = (r[~i]s>. 
Similarly, for a two-particle operator ~=SZ~>j ~j given as a sum of two- 

electron operators ~j ,  its average value is 

(1 ~(~)[~3[ 1 ~(~)> = tr[Gb(R)L(S) + Gb(Q(S)) Q(S)t], 

where [Gb(E)]rs = Z t , .  Et,(Z(ur[d,jI ts) - (ur]~,jlst)). 
In particular, the transition moment between states (s) and (s') associated with 

the dipole operator J - =  Zi g~ can be expressed as 

~, 7j(s)lj[ ~ 7j(~')) = tr[t(,,/~ aXrQ(~,)+ x /2  a(~')Q(~), + Q(S')Q(S),Q(~,),Q(S,))], 

where t is the matrix of elements trs = <rib,is>. 
For a triplet state the development goes in a perfectly similar manner as before. 
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Here we gather the corresponding expressions : 

m o  mu 

37m) = ~ ~ 3q~ ~,ww"(*), with tr(A~S)A(~')*)=6s~,, 
I V 

liAT ... V i . . .LLl l  , 
(3 t t ' , , v l~13~ , , , v , )=  (a ~otJg'l l~o)bl, ,avv,  + F v v , a u , -  F , , , a v v , - (  l '  VllV') ,  
3 E¢*) = tr{h(R)[R + Q<*)Q(*)* - Q<*)* Q(~)] + f R  - Q~Slt K(Q(*)) }, 

where [K(Q<~))]~.=£t,. Ql~l(ur[st), with tr(Q<*lQ<S')*)=a**,. 

3. First-Order Changes and the Stationary-Energy Condition 

The problem of minimizing the energy concerns the optimization of the linear 
expansion coefficients A <s) and the molecular orbital coefficients C (matrix R). 

A. If the orbital coefficients are given, the optimal expansion coefficients A ~) 
may be determined from the eigenvalue problem for the CI matrix, whose elements 
have the expressions (5). 

B. The minimization of the energy with respect to the molecular orbital co- 
efficients C can be approached introducing a m × m orthogonal matrix U(X) of 
the form [1] 

U ( X ) = - I + 2 P  -1, with P = I + X - . ~ ,  (11) 

where X is an arbitrary m × m matrix. Performing the transformations 

R =  UR~J and ~(s)= UQ(S)~j (12) 

on the two initial matrices R and Q(S), which satisfy the constraints (10), the 
transformed matrices (12), due to the orthogonality of U, continue to satisfy the 
constraints (10). Substituting Eq.(12) into the energy expression (7), one has 

1 ~ )  = tr[h(R )L ~) + f ~  + G(~(~))~(s),]. (13) 

The matrix transformations (12) are equivalent to an orthogonal transforma- 
tion made on the full atomic basis IX) ; namely, if lz)  ~ IX) U, the transformations 
induced on the molecular orbital coefficients are C -~ UC = C and D ~ UD = D, 
so that the matrices R and Q(~) are given by Eq.(12) and the energy by Eq.(13). 
Instead, the matrix A ~) is not affected by a transformation of this kind: its invari- 
ance is immediately brought out observing that A (s) _~ ~s)  = ~Q~, ,  = A <s) 

Let U ~  U+6U, where 6 U = 2 P - ~ 6 X P  I + 2 P - ~ 6 X P - ~ ,  the first-order 
change 6E (s) of the energy with respect to the independent variables X can be 
worked out and, after some straightforward algebra [1], the gradient matrix G~ is 
obtained 

G x = 4 P - ~ [ D ~ - b x ] P  -~, (14) 

where D~ = L(S)h(R) + Rh(L ~)) + Q<~)+ G(Q (~)) + Q~S)G(Q~)*). 
The minimum energy condition G~= O is then equivalent to the condition 

that D~ has to be a symmetric matrix, i.e. 

D ~ = b x ,  (15) 
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which yields just the necessary relations to determine the m(m - 1)/2 elements of 
the arbitrary skew-symmetric matrix X - ~ ' .  

Eq.(15) is the form assumed by the Brillouin theorem for the particular case 
of the theory here presented (see Ref. [ lb]) .  

4. An Iterative Method of Solution 

In order to satisfy the minimum condition (15) an iterative process can be 
set up according to the following steps [1]. 

1) The initial LCAO coefficient matrix to start with, can be obtained by 
diagonalizing the core part of the Hamiltonian '  the matrices C, D and R = C C  ~ 
are computed in this way. 

2) Then the CI secular problem is solved to obtain the initial matrix A ~s) and 
a(o s) associated with the energy IE(S) for the ground or excited state (s) and the 
matrix Q (s) is calculated. 

3) The matrix A (s) so found is held fixed and the minimization process for the 
orbital coefficients is started with X =  O, the gradient matrix Gx is computed and a 
new point X' is found along the chosen algorithm. With the new matrix U' = U(X')  
corresponding to X', the transformed matrices R-'= U ' R I / '  and ~(sy= U,Q(S)~/, 
are obtained and then employed for the new iteration. The test of convergence 
can be made both on the decrement A E  ~) of the energy and on the value of the 
gradient modulus m s = tr(G~(~x). In the calculations reported below the variable 
metric algorithm of  Murtagh and Sargent has been applied as described in Ref. 
[ la] .  

4) When self-consistence is reached (with the previously fixed A ~)), the R, C 
and D so found are employed to redetermine the new A ~). The C and D matrices 
are used for step 2; then step 3 follows. An alternative way to obtain MO's for 
the CI matrix elements is the diagonalization of the Hartree-Fock matrix h(R); 
this procedure is not always stable, especially near the minimum, but it has proved 
to be convenient in the first two or three CI calculations to speed up convergence. 

The whole procedure is run over again until the differences IA (~)"ew _ A (~) °ld I (or, 
alternatively, the energy decrements) vanish to the prescribed accuracy. 

5. Test Calculations. Discussion 

A complete program (coded in F O R T R A N  language for a UNIVAC 1106 
computer) has been written for the calculations according to the formulation 
presented above. This program is the third part of a general SCF program of 
which the first part computes all the necessary integrals and the second one per- 
forms the transformation of the integrals into the basis of the Schmidt ortho- 
normal symmetry adapted orbitals. Calculations have been made on H 2 0  and 
H2S molecules, mainly with the aim of testing the convergence of the method. 

5.1. H 2 0  Molecule 

The atomic orbital basis used is formed by ls(7.65), 2s(1.74), 2s'(2.90), 2p(1.56), 
2p'(3.60), 3s(1.00) on the oxygen atom, and Is(1.20), 2s(0.80) on the hydrogen 
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atoms. The molecular geometry is the experimental one: O H =  1.8111 a.u. and 
H 0 H  = 104 ° 27'. By way of illustration of convergence behaviour of the energy 
minimization, we report  in Table 1 some numerical results of the iterative process. 
The parameter c~ of  the Table 1 has been defined in Ref. [ la] .  We have found that 
the convergence rate may be improved by a more proper choice of the ~ value. 
The density matrix R at the starting point was obtained from the eigenvectors of 
the core matrix. This starting point of very bad energy has been deliberately 
chosen to test the reliability of the method. In Table 2 we report the values of the 
dipole moment  of  the ground state and the vertical transition energies together with 
their oscillator strengths. The given results are not surely accurate mainly because 
the chosen basis does contain neither d oxygen orbitals upon which the value of 
the dipole moment depends [6] nor some diffuse orbitals, which have proved 
necessary for a correct description of the excited states [7]. 

5.2. H2S Molecule 

The atomic orbital basis is the following: on the S atom ls(15.541), 2s(5.3144), 
2p(5.9885), 3s(2.1223), 3p(1.8273), 4s(0.20) and on the H atoms ls(0.8), 2s(0.5). 

Table 1. Iterative process for the energy minimization of H20 molecule 

Energy (a.u.) ~ mo 

1st Secular Determinant -68.0822 
Iteration n. 1 73.5480 0.0125 

15 75.0293 

2nd Secular Determinant -75.9207 
Iteration n. 1 - 75.9304 0.0075 

15 -75.9400 

3rd Secular Determinant - 75.9616 
Iteration n. 1 - 75.9616 0.0075 

5 -75.9618 

4th Secular Determinant -75.9619 
Iteration n. 1 -75.9619 0.0055 

6 - 75.9620 

648.551 
11.714 

0.817 
0.014 

0.382 
0.001 

0.155 
0.0007 

Table 2. Numerical results for ground and excited states of the H20 
molecule 

Calc. Exp. a 

Total Energy (a.u.) - 75.9620 

Dipole Moment (D) 2.71 1.85 +0.02 

Vertical Excitation 7.85(0.0353)1B1 7.49(0.03) 
Energies (eV) and 10.05(0.0000) 1A ~ 9.1 
Oscillator Strengths 11.47(0.1243) 1B l 9.996(0.084) 

12.34(0.0512) 1B2 
14.66(0.1934)1B2 
17.16(0.2553)1A1 10.17 
18.49(0.0391)XB2 
20.93(0.0270) ~ A 

a Ref. [7]. 
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Table 3. lterative process for the energy minimization of H2S molecule 

Energy (a.u.) c~ m 0 

1st Secular Determinant - 396.9632 
Iteration n. 1 - 397.0950 0.0065 30.0055 

15 397.5065 10.0757 
2nd Secular Determinant - 397.7303 

Iteration n. 1 -397.7303 0.0050 0.0511 
10 -397.7305 0.0228 

3rd Secular Determinant - 397.7313 
Iteration n. 1 - 397.7314 0.0050 0.00048 

Table 4. Numerical results for ground and excited states of the H2S 
molecule 

Calc. Exp? 

Total Energy (a.u.) 

Dipole Moment (D) 

Vertical Excitation 
Energies (eV) and 
Oscillator Strengths 

-397.7314 
1.38 0.98 

6.42(0.013) 1B 1 6.32(0.04) 
7.29(0.000) 1A2 7.85 
8.81(0.000) 1Az 8.02 
9.28 IB 1 9.18 

10.72 1B l 10.91 
10.72(0.042) 1B 2 
11.45 192 
12.54 1B 2 
13.11 1A 1 

a From Ref. [8]. 

T h e  g e o m e t r i c a l  p a r a m e t e r s  a re  S H = 2 . 5 4 2 7  a .u .  a n d  H S H = 9 0  ° 8'. T h e  c o n -  

v e r g e n c e  tes t  is r e p o r t e d  in  T a b l e  3 a n d  t h e  r e su l t s  f o r  t h e  g r o u n d  a n d  e x c i t e d  

s t a t e s  in  T a b l e  4. T h e  s a m e  c o m m e n t s  a p p l y  as a b o v e .  

T h e  r e su l t s  a re  e n c o u r a g i n g  e n o u g h  to  j u s t i f y  a f u r t h e r  e f fo r t  t o  i m p r o v e  t h e  

c o n v e r g e n c e  r a t e  o f  t he  o r b i t a l  o p t i m i z a t i o n ,  in  p a r t i c u l a r  n e a r  to  t h e  m i n i m u m  : 

u s i n g  t h e  s e c o n d  e n e r g y  d e r i v a t i v e s  c o u l d  b e  a s u i t a b l e  w a y  [ l a ] .  

Acknowledgements. Thanks are due to Dr. R.M. Stevens for his program on molecular integral 
calculation. The financial support of the Centro Nazionale delle Ricerche is gratefully acknowledged. 

References 

1. a) Polezzo,S. : Theoret. Chim. Acta (Berl.) 38, 211 (1975) 
b) Polezzo,S. : Theoret. Chim. Acta (Berl.) 40, 245 (1975) 

2. a) Gianinetti,E. : lstituto Lombardo, Rend. Sc. A 99, 771 (1965) 
b) Dunning,T.H. : J. Chem. Phys. 47, 1735 (1967) 
c) Grein,F. :Intern. J. Quantum Chem. 5, 165 (1971) 
d) Chang,T.C., Grein,F. : J. Chem. Phys. 57, 5270 (1972) 

3. Dacre,P.D., Watts,C.J., Williams,G.R.J., McWeeny,R. : Mol. Phys. 30, 1203 (1975) 
4. McWeeny,R., Sutcliffe,B.T.: Methods of molecular quantum mechanics. New York: Academic 

Press 1969 



Direct Minimization of the Energy Functional 319 

5. Pople,J.A. : Proc. Phys. Soc.(London) A 68, 81 (1955) 
6. Aung,S., Pitzer,R.M., Sunney,I.C. : J. Chem. Phys. 49, 2071 (1968) 
7. Winter,N.W., Goddard III,W.A., Bobrowicz,F.W. : J. Chem. Phys. 62, 4325 (1975) 
8. Carroll,D.G., Armstrong,A.T., McGlynn,S.P. : J. Chem. Phys. 44, 1865 (1966) 

Prof. S. Polezzo 
Istituto di Chimica Fisica 
dell'Universit~t 
via Golgi 19 
1-20133 Milano 
Italy 


